Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
JMIR Public Health Surveill ; 10: e52047, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569175

RESUMO

BACKGROUND: Prepandemic sentinel surveillance focused on improved management of winter pressures, with influenza-like illness (ILI) being the key clinical indicator. The World Health Organization (WHO) global standards for influenza surveillance include monitoring acute respiratory infection (ARI) and ILI. The WHO's mosaic framework recommends that the surveillance strategies of countries include the virological monitoring of respiratory viruses with pandemic potential such as influenza. The Oxford-Royal College of General Practitioner Research and Surveillance Centre (RSC) in collaboration with the UK Health Security Agency (UKHSA) has provided sentinel surveillance since 1967, including virology since 1993. OBJECTIVE: We aim to describe the RSC's plans for sentinel surveillance in the 2023-2024 season and evaluate these plans against the WHO mosaic framework. METHODS: Our approach, which includes patient and public involvement, contributes to surveillance objectives across all 3 domains of the mosaic framework. We will generate an ARI phenotype to enable reporting of this indicator in addition to ILI. These data will support UKHSA's sentinel surveillance, including vaccine effectiveness and burden of disease studies. The panel of virology tests analyzed in UKHSA's reference laboratory will remain unchanged, with additional plans for point-of-care testing, pneumococcus testing, and asymptomatic screening. Our sampling framework for serological surveillance will provide greater representativeness and more samples from younger people. We will create a biomedical resource that enables linkage between clinical data held in the RSC and virology data, including sequencing data, held by the UKHSA. We describe the governance framework for the RSC. RESULTS: We are co-designing our communication about data sharing and sampling, contextualized by the mosaic framework, with national and general practice patient and public involvement groups. We present our ARI digital phenotype and the key data RSC network members are requested to include in computerized medical records. We will share data with the UKHSA to report vaccine effectiveness for COVID-19 and influenza, assess the disease burden of respiratory syncytial virus, and perform syndromic surveillance. Virological surveillance will include COVID-19, influenza, respiratory syncytial virus, and other common respiratory viruses. We plan to pilot point-of-care testing for group A streptococcus, urine tests for pneumococcus, and asymptomatic testing. We will integrate test requests and results with the laboratory-computerized medical record system. A biomedical resource will enable research linking clinical data to virology data. The legal basis for the RSC's pseudonymized data extract is The Health Service (Control of Patient Information) Regulations 2002, and all nonsurveillance uses require research ethics approval. CONCLUSIONS: The RSC extended its surveillance activities to meet more but not all of the mosaic framework's objectives. We have introduced an ARI indicator. We seek to expand our surveillance scope and could do more around transmissibility and the benefits and risks of nonvaccine therapies.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Infecções Respiratórias , Viroses , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Vigilância de Evento Sentinela , Infecções Respiratórias/epidemiologia , Organização Mundial da Saúde , Atenção Primária à Saúde
2.
Vaccine ; 42(7): 1656-1664, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38342716

RESUMO

We present England 2021/22 end-of-season adjusted vaccine effectiveness (aVE) against laboratory confirmed influenza related emergency care use in children aged 1-17 and in adults aged 50+, and serological findings in vaccinated vs unvaccinated adults by hemagglutination inhibition assay. Influenza vaccination has been routinely offered to all children aged 2-10 years and adults aged 65 years + in England. In 2021/22, the offer was extended to children to age 15 years, and adults aged 50-64 years. Influenza activity rose during the latter half of the 2021/22 season, while remaining comparatively low due to COVID-19 pandemic control measures. Influenza A(H3N2) strains predominated. A test negative design was used to estimate aVE by vaccine type. Cases and controls were identified within a sentinel laboratory surveillance system. Vaccine histories were obtained from the National Immunisation Management Service (NIMS), an influenza and COVID-19 vaccine registry. These were linked to emergency department presentations (excluding accidents) with respiratory swabbing ≤ 14 days before or ≤ 7 days after presentation. Amongst adults, 423 positive and 32,917 negative samples were eligible for inclusion, and 145 positive and 6,438 negative samples among children. Those admitted to hospital were further identified. In serology against the circulating A(H3N2) A/Bangladesh/4005/2020-like strain, 61 % of current season adult vaccinees had titres ≥ 1:40 compared to 17 % of those unvaccinated in 2020/21 or 2021/22 (p < 0.001). We found good protection from influenza vaccination against influenza requiring emergency care in children (72.7 % [95 % CI 52.7, 84.3 %]) and modest effectiveness in adults (26.1 % [95 % CI 4.5, 42.8 %]). Adult VE was higher for A(H1N1) (81 % [95 % CI 50, 93 %]) than A(H3N2) (33 % [95 % CI 6, 53 %]). Consistent protection was observable across preschool, primary and secondary school aged children. Imperfect test specificity combined with very low prevalence may have biased estimates towards null. With limited influenza circulation, the study could not determine differences by vaccine types.


Assuntos
Serviços Médicos de Emergência , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adulto , Criança , Pré-Escolar , Humanos , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Estudos de Casos e Controles , Estações do Ano , Vírus da Influenza A Subtipo H3N2 , Vacinas contra COVID-19 , Pandemias/prevenção & controle , Vacinas contra Influenza/uso terapêutico , Inglaterra/epidemiologia , Vacinação , Atenção Primária à Saúde
3.
Clin Microbiol Infect ; 30(3): 380-386, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38103638

RESUMO

OBJECTIVES: Limited evidence exists for the diagnostic performance of point-of-care tests for SARS-CoV-2 and influenza in community healthcare. We carried out a prospective diagnostic accuracy study of the LumiraDx™ SARS-CoV-2 and influenza A or B assay in primary care. METHODS: Total of 913 adults and children with symptoms of current SARS-CoV-2 infection were recruited from 18 UK primary care practices during a period when Omicron was the predominant COVID variant of concern (June 2022 to December 2022). Trained health care staff performed the index test, with diagnostic accuracy parameters estimated for SARS-CoV-2 and influenza against real-time reverse-transcription PCR (rtRT-PCR). RESULTS: 151/887 participants were SARS-CoV-2 rtRT-PCR positive, 109 positive for Influenza A, 6 for Influenza B. Index test sensitivity for SARS-CoV-2 was 80.8% (122 of the 151, 95% CI, 73.6-86.7%) and specificity 98.9% (728 of the 736, 95% CI, 97.9-99.5%). For influenza A, sensitivity was 61.5% (67 of the 109, 95% CI, 51.7-70.6%) and specificity 99.4% (771 of the 776, 95% CI, 98.5-99.8%). Sensitivity to detect SARS-CoV-2 and influenza dropped sharply at rtRT-PCR cycle thresholds (Ct) > 30. DISCUSSIONS: The LumiraDx™ SARS-CoV-2 and influenza A/B assay had moderate sensitivity for SARS-CoV-2 in symptomatic patients in primary care, with lower performance with high rtRT-PCR Ct. Negative results in this patient group cannot definitively rule out SARS-CoV-2 or influenza.


Assuntos
COVID-19 , Influenza Humana , Aves Predatórias , Adulto , Criança , Animais , Humanos , SARS-CoV-2/genética , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , COVID-19/diagnóstico , Sistemas Automatizados de Assistência Junto ao Leito , Estudos Prospectivos , 60410 , Testes Imediatos , Reação em Cadeia da Polimerase em Tempo Real , Atenção Primária à Saúde , Sensibilidade e Especificidade , Teste para COVID-19
4.
J Infect ; 87(4): 315-327, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37579793

RESUMO

BACKGROUND: COVID-19 vaccines have been shown to be highly effective against hospitalisation and death following COVID-19 infection. COVID-19 vaccine effectiveness estimates against severe endpoints among individuals with clinical conditions that place them at increased risk of critical disease are limited. METHODS: We used English primary care medical record data from the Oxford-Royal College of General Practitioners Research and Surveillance Centre sentinel network (N > 18 million). Data were linked to the National Immunisation Management Service database, Second Generation Surveillance System for virology test data, Hospital Episode Statistics, and death registry data. We estimated adjusted vaccine effectiveness (aVE) against COVID-19 infection followed by hospitalisation and death among individuals in specific clinical risk groups using a cohort design during the delta-dominant period. We also report mortality statistics and results from our antibody surveillance in this population. FINDINGS: aVE against severe endpoints was high, 14-69d following a third dose aVE was 96.4% (95.1%-97.4%) and 97.9% (97.2%-98.4%) for clinically vulnerable people given a Vaxzevria and Comirnaty primary course respectively. Lower aVE was observed in the immunosuppressed group: 88.6% (79.1%-93.8%) and 91.9% (85.9%-95.4%) for Vaxzevria and Comirnaty respectively. Antibody levels were significantly lower among the immunosuppressed group than those not in this risk group across all vaccination types and doses. The standardised case fatality rate within 28 days of a positive test was 3.9/1000 in people not in risk groups, compared to 12.8/1000 in clinical risk groups. Waning aVE with time since 2nd dose was also demonstrated, for example, Comirnaty aVE against hospitalisation reduced from 96.0% (95.1-96.7%) 14-69days post-dose 2-82.9% (81.4-84.2%) 182days+ post-dose 2. INTERPRETATION: In all clinical risk groups high levels of vaccine effectiveness against severe endpoints were seen. Reduced vaccine effectiveness was noted among the immunosuppressed group.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacina BNT162 , ChAdOx1 nCoV-19 , Estudos de Coortes , Eficácia de Vacinas , SARS-CoV-2 , Hospitalização , Atenção Primária à Saúde
5.
JMIR Res Protoc ; 12: e46938, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327029

RESUMO

BACKGROUND: Molecular point-of-care testing (POCT) used in primary care can inform whether a patient presenting with an acute respiratory infection has influenza. A confirmed clinical diagnosis, particularly early in the disease, could inform better antimicrobial stewardship. Social distancing and lockdowns during the COVID-19 pandemic have disturbed previous patterns of influenza infections in 2021. However, data from samples taken in the last quarter of 2022 suggest that influenza represents 36% of sentinel network positive virology, compared with 24% for respiratory syncytial virus. Problems with integration into the clinical workflow is a known barrier to incorporating technology into routine care. OBJECTIVE: This study aims to report the impact of POCT for influenza on antimicrobial prescribing in primary care. We will additionally describe severe outcomes of infection (hospitalization and mortality) and how POCT is integrated into primary care workflows. METHODS: The impact of POCT for influenza on antimicrobial stewardship (PIAMS) in UK primary care is an observational study being conducted between December 2022 and May 2023 and involving 10 practices that contribute data to the English sentinel network. Up to 1000 people who present to participating practices with respiratory symptoms will be swabbed and tested with a rapid molecular POCT analyzer in the practice. Antimicrobial prescribing and other study outcomes will be collected by linking information from the POCT analyzer with data from the patient's computerized medical record. We will collect data on how POCT is incorporated into practice using data flow diagrams, unified modeling language use case diagrams, and Business Process Modeling Notation. RESULTS: We will present the crude and adjusted odds of antimicrobial prescribing (all antibiotics and antivirals) given a POCT diagnosis of influenza, stratifying by whether individuals have a respiratory or other relevant diagnosis (eg, bronchiectasis). We will also present the rates of hospital referrals and deaths related to influenza infection in PIAMS study practices compared with a set of matched practices in the sentinel network and the rest of the network. We will describe any difference in implementation models in terms of staff involved and workflow. CONCLUSIONS: This study will generate data on the impact of POCT testing for influenza in primary care as well as help to inform about the feasibility of incorporating POCT into primary care workflows. It will inform the design of future larger studies about the effectiveness and cost-effectiveness of POCT to improve antimicrobial stewardship and any impact on severe outcomes. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/46938.

6.
JMIR Public Health Surveill ; 8(12): e39141, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534462

RESUMO

BACKGROUND: The Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) is one of Europe's oldest sentinel systems, working with the UK Health Security Agency (UKHSA) and its predecessor bodies for 55 years. Its surveillance report now runs twice weekly, supplemented by online observatories. In addition to conducting sentinel surveillance from a nationally representative group of practices, the RSC is now also providing data for syndromic surveillance. OBJECTIVE: The aim of this study was to describe the cohort profile at the start of the 2021-2022 surveillance season and recent changes to our surveillance practice. METHODS: The RSC's pseudonymized primary care data, linked to hospital and other data, are held in the Oxford-RCGP Clinical Informatics Digital Hub, a Trusted Research Environment. We describe the RSC's cohort profile as of September 2021, divided into a Primary Care Sentinel Cohort (PCSC)-collecting virological and serological specimens-and a larger group of syndromic surveillance general practices (SSGPs). We report changes to our sampling strategy that brings the RSC into alignment with European Centre for Disease Control guidance and then compare our cohort's sociodemographic characteristics with Office for National Statistics data. We further describe influenza and COVID-19 vaccine coverage for the 2020-2021 season (week 40 of 2020 to week 39 of 2021), with the latter differentiated by vaccine brand. Finally, we report COVID-19-related outcomes in terms of hospitalization, intensive care unit (ICU) admission, and death. RESULTS: As a response to COVID-19, the RSC grew from just over 500 PCSC practices in 2019 to 1879 practices in 2021 (PCSC, n=938; SSGP, n=1203). This represents 28.6% of English general practices and 30.59% (17,299,780/56,550,136) of the population. In the reporting period, the PCSC collected >8000 virology and >23,000 serology samples. The RSC population was broadly representative of the national population in terms of age, gender, ethnicity, National Health Service Region, socioeconomic status, obesity, and smoking habit. The RSC captured vaccine coverage data for influenza (n=5.4 million) and COVID-19, reporting dose one (n=11.9 million), two (n=11 million), and three (n=0.4 million) for the latter as well as brand-specific uptake data (AstraZeneca vaccine, n=11.6 million; Pfizer, n=10.8 million; and Moderna, n=0.7 million). The median (IQR) number of COVID-19 hospitalizations and ICU admissions was 1181 (559-1559) and 115 (50-174) per week, respectively. CONCLUSIONS: The RSC is broadly representative of the national population; its PCSC is geographically representative and its SSGPs are newly supporting UKHSA syndromic surveillance efforts. The network captures vaccine coverage and has expanded from reporting primary care attendances to providing data on onward hospital outcomes and deaths. The challenge remains to increase virological and serological sampling to monitor the effectiveness and waning of all vaccines available in a timely manner.


Assuntos
COVID-19 , Clínicos Gerais , Vacinas contra Influenza , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Vacinas contra COVID-19 , Medicina Estatal , Vacinação , Reino Unido/epidemiologia
7.
JMIR Res Protoc ; 11(8): e38026, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35960819

RESUMO

BACKGROUND: Respiratory syncytial virus (RSV) commonly causes lower respiratory tract infections and hospitalization in children. In 2019-2020, the Europe-wide RSV ComNet standardized study protocol was developed to measure the clinical and socioeconomic disease burden of RSV infections among children aged <5 years in primary care. RSV has a recognized seasonality in England. OBJECTIVE: We aimed to describe (1) the adaptations of the RSV ComNet standardized study protocol for England and (2) the challenges of conducting the study during the COVID-19 pandemic. METHODS: This study was conducted by the Oxford-Royal College of General Practitioners Research and Surveillance Centre-the English national primary care sentinel network. We invited all (N=248) general practices within the network that undertook virology sampling to participate in the study by recruiting eligible patients (registered population: n=3,056,583). Children aged <5 years with the following case definition of RSV infection were included in the study: those consulting a health care practitioner in primary care with symptoms meeting the World Health Organization's definition of acute respiratory illness or influenza-like illness who have laboratory-confirmed RSV infection. The parents/guardians of these cases were asked to complete 2 previously validated questionnaires (14 and 30 days postsampling). A sample size of at least 100 RSV-positive cases is required to estimate the percentage of children that consult in primary care who need hospitalization. Assuming a swab positivity rate of 20% in children aged <5 years, we estimated that 500 swabs are required. We adapted our method for the pandemic by extending sampling planned for winter 2020-2021 to a rolling data collection, allowing verbal consent and introducing home swabbing because of increased web-based consultations during the COVID-19 pandemic. RESULTS: The preliminary results of the data collection between International Organization for Standardization (ISO) weeks 1-41 in 2021 are described. There was no RSV detected in the winter of 2020-2021 through the study. The first positive RSV swab collected through the sentinel network in England was collected in ISO week 17 and then every week since ISO week 25. In total, 16 (N=248, 6.5%) of the virology-sampling practices volunteered to participate; these were high-sampling practices collecting the majority of eligible swabs across the sentinel network-200 (43.8%) out of 457 swabs, of which 54 (N=200, 27%) were positive for RSV. CONCLUSIONS: Measures to control the COVID-19 pandemic meant there was no circulating RSV last winter; however, RSV has circulated out of season, as detected by the sentinel network. The sentinel network practices have collected 40% (200/500) of the required samples, and 27% (54/200) were RSV positive. We have demonstrated the feasibility of implementing a European-standardized RSV disease burden study protocol in England during a pandemic, and we now need to recruit to this adapted protocol. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/38026.

8.
Lancet Digit Health ; 4(9): e646-e656, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35909058

RESUMO

BACKGROUND: Accurate assessment of COVID-19 severity in the community is essential for patient care and requires COVID-19-specific risk prediction scores adequately validated in a community setting. Following a qualitative phase to identify signs, symptoms, and risk factors, we aimed to develop and validate two COVID-19-specific risk prediction scores. Remote COVID-19 Assessment in Primary Care-General Practice score (RECAP-GP; without peripheral oxygen saturation [SpO2]) and RECAP-oxygen saturation score (RECAP-O2; with SpO2). METHODS: RECAP was a prospective cohort study that used multivariable logistic regression. Data on signs and symptoms (predictors) of disease were collected from community-based patients with suspected COVID-19 via primary care electronic health records and linked with secondary data on hospital admission (outcome) within 28 days of symptom onset. Data sources for RECAP-GP were Oxford-Royal College of General Practitioners Research and Surveillance Centre (RCGP-RSC) primary care practices (development set), northwest London primary care practices (validation set), and the NHS COVID-19 Clinical Assessment Service (CCAS; validation set). The data source for RECAP-O2 was the Doctaly Assist platform (development set and validation set in subsequent sample). The two probabilistic risk prediction models were built by backwards elimination using the development sets and validated by application to the validation datasets. Estimated sample size per model, including the development and validation sets was 2880 people. FINDINGS: Data were available from 8311 individuals. Observations, such as SpO2, were mostly missing in the northwest London, RCGP-RSC, and CCAS data; however, SpO2 was available for 1364 (70·0%) of 1948 patients who used Doctaly. In the final predictive models, RECAP-GP (n=1863) included sex (male and female), age (years), degree of breathlessness (three point scale), temperature symptoms (two point scale), and presence of hypertension (yes or no); the area under the curve was 0·80 (95% CI 0·76-0·85) and on validation the negative predictive value of a low risk designation was 99% (95% CI 98·1-99·2; 1435 of 1453). RECAP-O2 included age (years), degree of breathlessness (two point scale), fatigue (two point scale), and SpO2 at rest (as a percentage); the area under the curve was 0·84 (0·78-0·90) and on validation the negative predictive value of low risk designation was 99% (95% CI 98·9-99·7; 1176 of 1183). INTERPRETATION: Both RECAP models are valid tools to assess COVID-19 patients in the community. RECAP-GP can be used initially, without need for observations, to identify patients who require monitoring. If the patient is monitored and SpO2 is available, RECAP-O2 is useful to assess the need for treatment escalation. FUNDING: Community Jameel and the Imperial College President's Excellence Fund, the Economic and Social Research Council, UK Research and Innovation, and Health Data Research UK.


Assuntos
COVID-19 , Dispneia , Feminino , Humanos , Masculino , Atenção Primária à Saúde , Estudos Prospectivos , Fatores de Risco
9.
JMIR Public Health Surveill ; 8(8): e36989, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35861678

RESUMO

BACKGROUND: Following COVID-19, up to 40% of people have ongoing health problems, referred to as postacute COVID-19 or long COVID (LC). LC varies from a single persisting symptom to a complex multisystem disease. Research has flagged that this condition is underrecorded in primary care records, and seeks to better define its clinical characteristics and management. Phenotypes provide a standard method for case definition and identification from routine data and are usually machine-processable. An LC phenotype can underpin research into this condition. OBJECTIVE: This study aims to develop a phenotype for LC to inform the epidemiology and future research into this condition. We compared clinical symptoms in people with LC before and after their index infection, recorded from March 1, 2020, to April 1, 2021. We also compared people recorded as having acute infection with those with LC who were hospitalized and those who were not. METHODS: We used data from the Primary Care Sentinel Cohort (PCSC) of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) database. This network was recruited to be nationally representative of the English population. We developed an LC phenotype using our established 3-step ontological method: (1) ontological step (defining the reasoning process underpinning the phenotype, (2) coding step (exploring what clinical terms are available, and (3) logical extract model (testing performance). We created a version of this phenotype using Protégé in the ontology web language for BioPortal and using PhenoFlow. Next, we used the phenotype to compare people with LC (1) with regard to their symptoms in the year prior to acquiring COVID-19 and (2) with people with acute COVID-19. We also compared hospitalized people with LC with those not hospitalized. We compared sociodemographic details, comorbidities, and Office of National Statistics-defined LC symptoms between groups. We used descriptive statistics and logistic regression. RESULTS: The long-COVID phenotype differentiated people hospitalized with LC from people who were not and where no index infection was identified. The PCSC (N=7.4 million) includes 428,479 patients with acute COVID-19 diagnosis confirmed by a laboratory test and 10,772 patients with clinically diagnosed COVID-19. A total of 7471 (1.74%, 95% CI 1.70-1.78) people were coded as having LC, 1009 (13.5%, 95% CI 12.7-14.3) had a hospital admission related to acute COVID-19, and 6462 (86.5%, 95% CI 85.7-87.3) were not hospitalized, of whom 2728 (42.2%) had no COVID-19 index date recorded. In addition, 1009 (13.5%, 95% CI 12.73-14.28) people with LC were hospitalized compared to 17,993 (4.5%, 95% CI 4.48-4.61; P<.001) with uncomplicated COVID-19. CONCLUSIONS: Our LC phenotype enables the identification of individuals with the condition in routine data sets, facilitating their comparison with unaffected people through retrospective research. This phenotype and study protocol to explore its face validity contributes to a better understanding of LC.


Assuntos
COVID-19 , COVID-19/complicações , Teste para COVID-19 , Humanos , Fenótipo , Atenção Primária à Saúde , Estudos Retrospectivos , Síndrome Pós-COVID-19 Aguda
10.
JMIR Public Health Surveill ; 8(8): e37668, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35605170

RESUMO

BACKGROUND: Most studies of long COVID (symptoms of COVID-19 infection beyond 4 weeks) have focused on people hospitalized in their initial illness. Long COVID is thought to be underrecorded in UK primary care electronic records. OBJECTIVE: We sought to determine which symptoms people present to primary care after COVID-19 infection and whether presentation differs in people who were not hospitalized, as well as post-long COVID mortality rates. METHODS: We used routine data from the nationally representative primary care sentinel cohort of the Oxford-Royal College of General Practitioners Research and Surveillance Centre (N=7,396,702), applying a predefined long COVID phenotype and grouped by whether the index infection occurred in hospital or in the community. We included COVID-19 infection cases from March 1, 2020, to April 1, 2021. We conducted a before-and-after analysis of long COVID symptoms prespecified by the Office of National Statistics, comparing symptoms presented between 1 and 6 months after the index infection matched with the same months 1 year previously. We conducted logistic regression analysis, quoting odds ratios (ORs) with 95% CIs. RESULTS: In total, 5.63% (416,505/7,396,702) and 1.83% (7623/416,505) of the patients had received a coded diagnosis of COVID-19 infection and diagnosis of, or referral for, long COVID, respectively. People with diagnosis or referral of long COVID had higher odds of presenting the prespecified symptoms after versus before COVID-19 infection (OR 2.66, 95% CI 2.46-2.88, for those with index community infection and OR 2.42, 95% CI 2.03-2.89, for those hospitalized). After an index community infection, patients were more likely to present with nonspecific symptoms (OR 3.44, 95% CI 3.00-3.95; P<.001) compared with after a hospital admission (OR 2.09, 95% CI 1.56-2.80; P<.001). Mental health sequelae were more strongly associated with index hospital infections (OR 2.21, 95% CI 1.64-2.96) than with index community infections (OR 1.36, 95% CI 1.21-1.53; P<.001). People presenting to primary care after hospital infection were more likely to be men (OR 1.43, 95% CI 1.25-1.64; P<.001), more socioeconomically deprived (OR 1.42, 95% CI 1.24-1.63; P<.001), and with higher multimorbidity scores (OR 1.41, 95% CI 1.26-1.57; P<.001) than those presenting after an index community infection. All-cause mortality in people with long COVID was associated with increasing age, male sex (OR 3.32, 95% CI 1.34-9.24; P=.01), and higher multimorbidity score (OR 2.11, 95% CI 1.34-3.29; P<.001). Vaccination was associated with reduced odds of mortality (OR 0.10, 95% CI 0.03-0.35; P<.001). CONCLUSIONS: The low percentage of people recorded as having long COVID after COVID-19 infection reflects either low prevalence or underrecording. The characteristics and comorbidities of those presenting with long COVID after a community infection are different from those hospitalized. This study provides insights into the presentation of long COVID in primary care and implications for workload.


Assuntos
COVID-19 , Infecções Comunitárias Adquiridas , Infecção Hospitalar , Síndrome Pós-COVID-19 Aguda , Feminino , Humanos , Masculino , COVID-19/complicações , SARS-CoV-2
11.
J Infect ; 84(6): 814-824, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35405169

RESUMO

OBJECTIVES: To monitor changes in seroprevalence of SARS-CoV-2 antibodies in populations over time and between different demographic groups. METHODS: A subset of practices in the Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) sentinel network provided serum samples, collected when volunteer patients had routine blood tests. We tested these samples for SARS-CoV-2 antibodies using Abbott (Chicago, USA), Roche (Basel, Switzerland) and/or Euroimmun (Luebeck, Germany) assays, and linked the results to the patients' primary care computerised medical records. We report seropositivity by region and age group, and additionally examined the effects of gender, ethnicity, deprivation, rurality, shielding recommendation and smoking status. RESULTS: We estimated seropositivity from patients aged 18-100 years old, which ranged from 4.1% (95% CI 3.1-5.3%) to 8.9% (95% CI 7.8-10.2%) across the different assays and time periods. We found higher Euroimmun seropositivity in younger age groups, people of Black and Asian ethnicity (compared to white), major conurbations, and non-smokers. We did not observe any significant effect by region, gender, deprivation, or shielding recommendation. CONCLUSIONS: Our results suggest that prior to the vaccination programme, most of the population remained unexposed to SARS-CoV-2.


Assuntos
COVID-19 , Clínicos Gerais , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais , COVID-19/epidemiologia , Inglaterra/epidemiologia , Humanos , Pessoa de Meia-Idade , Atenção Primária à Saúde , SARS-CoV-2 , Estudos Soroepidemiológicos , Adulto Jovem
12.
J Infect ; 83(2): 228-236, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34004222

RESUMO

OBJECTIVES: To mitigate risk of mortality from coronavirus 2019 infection (COVID-19), the UK government recommended 'shielding' of vulnerable people through self-isolation for 12 weeks. METHODS: A retrospective cohort study using a nationally representative English primary care database comparing people aged >= 40 years who were recorded as being advised to shield using a fixed ratio of 1:1, matching to people with the same diagnoses not advised to shield (n = 77,360 per group). Time-to-death was compared using Cox regression, reporting the hazard ratio (HR) of mortality between groups. A sensitivity analysis compared exact matched cohorts (n = 24,752 shielded, n = 61,566 exact matches). RESULTS: We found a time-varying HR of mortality between groups. In the first 21 days, the mortality risk in people shielding was half those not (HR = 0.50, 95%CI:0.41-0.59. p < 0.0001). Over the remaining nine weeks, mortality risk was 54% higher in the shielded group (HR=1.54, 95%CI:1.41-1.70, p < 0.0001). Beyond the shielding period, mortality risk was over two-and-a-half times higher in the shielded group (HR=2.61, 95%CI:2.38-2.87, p < 0.0001). CONCLUSIONS: Shielding halved the risk of mortality for 21 days. Mortality risk became higher across the remainder of the shielding period, rising to two-and-a-half times greater post-shielding. Shielding may be beneficial in the next wave of COVID-19.


Assuntos
COVID-19 , Estudos de Coortes , Humanos , Atenção Primária à Saúde , Estudos Retrospectivos , SARS-CoV-2
13.
JMIR Public Health Surveill ; 7(2): e24341, 2021 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-33605892

RESUMO

BACKGROUND: The Oxford-Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) and Public Health England (PHE) are commencing their 54th season of collaboration at a time when SARS-CoV-2 infections are likely to be cocirculating with the usual winter infections. OBJECTIVE: The aim of this study is to conduct surveillance of influenza and other monitored respiratory conditions and to report on vaccine uptake and effectiveness using nationally representative surveillance data extracted from primary care computerized medical records systems. We also aim to have general practices collect virology and serology specimens and to participate in trials and other interventional research. METHODS: The RCGP RSC network comprises over 1700 general practices in England and Wales. We will extract pseudonymized data twice weekly and are migrating to a system of daily extracts. First, we will collect pseudonymized, routine, coded clinical data for the surveillance of monitored and unexpected conditions; data on vaccine exposure and adverse events of interest; and data on approved research study outcomes. Second, we will provide dashboards to give general practices feedback about levels of care and data quality, as compared to other network practices. We will focus on collecting data on influenza-like illness, upper and lower respiratory tract infections, and suspected COVID-19. Third, approximately 300 practices will participate in the 2020-2021 virology and serology surveillance; this will include responsive surveillance and long-term follow-up of previous SARS-CoV-2 infections. Fourth, member practices will be able to recruit volunteer patients to trials, including early interventions to improve COVID-19 outcomes and point-of-care testing. Lastly, the legal basis for our surveillance with PHE is Regulation 3 of the Health Service (Control of Patient Information) Regulations 2002; other studies require appropriate ethical approval. RESULTS: The RCGP RSC network has tripled in size; there were previously 100 virology practices and 500 practices overall in the network and we now have 322 and 1724, respectively. The Oxford-RCGP Clinical Informatics Digital Hub (ORCHID) secure networks enable the daily analysis of the extended network; currently, 1076 practices are uploaded. We are implementing a central swab distribution system for patients self-swabbing at home in addition to in-practice sampling. We have converted all our primary care coding to Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) coding. Throughout spring and summer 2020, the network has continued to collect specimens in preparation for the winter or for any second wave of COVID-19 cases. We have collected 5404 swabs and detected 623 cases of COVID-19 through extended virological sampling, and 19,341 samples have been collected for serology. This shows our preparedness for the winter season. CONCLUSIONS: The COVID-19 pandemic has been associated with a groundswell of general practices joining our network. It has also created a permissive environment in which we have developed the capacity and capability of the national primary care surveillance systems and our unique public health institute, the RCGP and University of Oxford collaboration.


Assuntos
Protocolos Clínicos , Influenza Humana/prevenção & controle , Infecções Respiratórias/prevenção & controle , Vacinas/uso terapêutico , COVID-19/prevenção & controle , Feminino , Humanos , Influenza Humana/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Vigilância da População/métodos , Saúde Pública , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/virologia , Reino Unido , Tratamento Farmacológico da COVID-19
14.
J Med Internet Res ; 22(12): e23721, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33306032

RESUMO

BACKGROUND: National Health Service (NHS) England supports social prescribing in order to address social determinants of health, which account for approximately 80% of all health outcomes. Nevertheless, data on ongoing social prescribing activities are lacking. Although NHS England has attempted to overcome this problem by recommending 3 standardized primary care codes, these codes do not capture the social prescribing activity to a level of granularity that would allow for fair attribution of outcomes to social prescribing. OBJECTIVE: In this study, we explored whether an alternative approach to coding social prescribing activity, specifically through a social prescribing ontology, can be used to capture the social prescriptions used in primary care in greater detail. METHODS: The social prescribing ontology, implemented according to the Web Ontology Language, was designed to cover several key concepts encompassing social determinants of health. Readv2 and Clinical Terms Version 3 codes were identified using the NHS Terms Browser. The Royal College of General Practitioners Research Surveillance Centre, a sentinel network of over 1000 primary care practices across England covering a population of more than 4,000,000 registered patients, was used for data analyses for a defined period (ie, January 2011 to December 2019). RESULTS: In all, 668 codes capturing social prescriptions addressing different social determinants of health were identified for the social prescribing ontology. For the study period, social prescribing ontology codes were used 5,504,037 times by primary care practices of the Royal College of General Practitioners Research Surveillance Centre as compared to 29,606 instances of use of social prescribing codes, including NHS England's recommended codes. CONCLUSIONS: A social prescribing ontology provides a powerful alternative to the codes currently recommended by NHS England to capture detailed social prescribing activity in England. The more detailed information thus obtained will allow for explorations about whether outputs or outcomes of care delivery can be attributed to social prescriptions, which is essential for demonstrating the overall value that social prescribing can deliver to the NHS and health care systems.


Assuntos
Codificação Clínica/métodos , Determinantes Sociais da Saúde/normas , Estudos de Viabilidade , Feminino , Humanos , Masculino , Atenção Primária à Saúde
15.
Br J Gen Pract ; 70(701): e890-e898, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077508

RESUMO

BACKGROUND: The SARS-CoV-2 pandemic has passed its first peak in Europe. AIM: To describe the mortality in England and its association with SARS-CoV-2 status and other demographic and risk factors. DESIGN AND SETTING: Cross-sectional analyses of people with known SARS-CoV-2 status in the Oxford RCGP Research and Surveillance Centre (RSC) sentinel network. METHOD: Pseudonymised, coded clinical data were uploaded from volunteer general practice members of this nationally representative network (n = 4 413 734). All-cause mortality was compared with national rates for 2019, using a relative survival model, reporting relative hazard ratios (RHR), and 95% confidence intervals (CI). A multivariable adjusted odds ratios (OR) analysis was conducted for those with known SARS-CoV-2 status (n = 56 628, 1.3%) including multiple imputation and inverse probability analysis, and a complete cases sensitivity analysis. RESULTS: Mortality peaked in week 16. People living in households of ≥9 had a fivefold increase in relative mortality (RHR = 5.1, 95% CI = 4.87 to 5.31, P<0.0001). The ORs of mortality were 8.9 (95% CI = 6.7 to 11.8, P<0.0001) and 9.7 (95% CI = 7.1 to 13.2, P<0.0001) for virologically and clinically diagnosed cases respectively, using people with negative tests as reference. The adjusted mortality for the virologically confirmed group was 18.1% (95% CI = 17.6 to 18.7). Male sex, population density, black ethnicity (compared to white), and people with long-term conditions, including learning disability (OR = 1.96, 95% CI = 1.22 to 3.18, P = 0.0056) had higher odds of mortality. CONCLUSION: The first SARS-CoV-2 peak in England has been associated with excess mortality. Planning for subsequent peaks needs to better manage risk in males, those of black ethnicity, older people, people with learning disabilities, and people who live in multi-occupancy dwellings.


Assuntos
COVID-19 , Doenças não Transmissíveis/epidemiologia , SARS-CoV-2/isolamento & purificação , Fatores Etários , COVID-19/diagnóstico , COVID-19/epidemiologia , Registros Eletrônicos de Saúde/estatística & dados numéricos , Inglaterra/epidemiologia , Etnicidade , Características da Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade , Medição de Risco/métodos , Fatores de Risco , Vigilância de Evento Sentinela , Fatores Sexuais
16.
JMIR Public Health Surveill ; 6(4): e21434, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33112762

RESUMO

BACKGROUND: Creating an ontology for COVID-19 surveillance should help ensure transparency and consistency. Ontologies formalize conceptualizations at either the domain or application level. Application ontologies cross domains and are specified through testable use cases. Our use case was an extension of the role of the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) to monitor the current pandemic and become an in-pandemic research platform. OBJECTIVE: This study aimed to develop an application ontology for COVID-19 that can be deployed across the various use-case domains of the RCGP RSC research and surveillance activities. METHODS: We described our domain-specific use case. The actor was the RCGP RSC sentinel network, the system was the course of the COVID-19 pandemic, and the outcomes were the spread and effect of mitigation measures. We used our established 3-step method to develop the ontology, separating ontological concept development from code mapping and data extract validation. We developed a coding system-independent COVID-19 case identification algorithm. As there were no gold-standard pandemic surveillance ontologies, we conducted a rapid Delphi consensus exercise through the International Medical Informatics Association Primary Health Care Informatics working group and extended networks. RESULTS: Our use-case domains included primary care, public health, virology, clinical research, and clinical informatics. Our ontology supported (1) case identification, microbiological sampling, and health outcomes at an individual practice and at the national level; (2) feedback through a dashboard; (3) a national observatory; (4) regular updates for Public Health England; and (5) transformation of a sentinel network into a trial platform. We have identified a total of 19,115 people with a definite COVID-19 status, 5226 probable cases, and 74,293 people with possible COVID-19, within the RCGP RSC network (N=5,370,225). CONCLUSIONS: The underpinning structure of our ontological approach has coped with multiple clinical coding challenges. At a time when there is uncertainty about international comparisons, clarity about the basis on which case definitions and outcomes are made from routine data is essential.


Assuntos
Ontologias Biológicas , COVID-19/epidemiologia , Atenção Primária à Saúde/métodos , Vigilância de Evento Sentinela , Humanos , Pandemias
17.
J Infect ; 81(5): 785-792, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32858068

RESUMO

OBJECTIVES: Few studies report contributors to the excess mortality in England during the first wave of coronavirus disease 2019 (COVID-19) infection. We report the absolute excess risk (AER) of mortality and excess mortality rate (EMR) from a nationally representative COVID-19 sentinel surveillance network including known COVID-19 risk factors in people aged 45 years and above. METHODS: Pseudonymised, coded clinical data were uploaded from contributing primary care providers (N = 1,970,314, ≥45years). We calculated the AER in mortality by comparing mortality for weeks 2 to 20 this year with mortality data from the Office for National Statistics (ONS) from 2018 for the same weeks. We conducted univariate and multivariate analysis including preselected variables. We report AER and EMR, with 95% confidence intervals (95% CI). RESULTS: The AER of mortality was 197.8/10,000 person years (95%CI:194.30-201.40). The EMR for male gender, compared with female, was 1.4 (95%CI:1.35-1.44, p<0.00); for our oldest age band (≥75 years) 10.09 (95%CI:9.46-10.75, p<0.00) compared to 45-64 year olds; Black ethnicity's EMR was 1.17 (95%CI: 1.03-1.33, p<0.02), reference white; and for dwellings with ≥9 occupants 8.01 (95%CI: 9.46-10.75, p<0.00). Presence of all included comorbidities significantly increased EMR. Ranked from lowest to highest these were: hypertension, chronic kidney disease, chronic respiratory and heart disease, and cancer or immunocompromised. CONCLUSIONS: The absolute excess mortality was approximately 2 deaths per 100 person years in the first wave of COVID-19. More personalised shielding advice for any second wave should include ethnicity, comorbidity and household size as predictors of risk.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/mortalidade , Pneumonia Viral/epidemiologia , Pneumonia Viral/mortalidade , Fatores Etários , Idoso , População Negra , COVID-19 , Comorbidade , Infecções por Coronavirus/etnologia , Infecções por Coronavirus/virologia , Estudos Transversais , Inglaterra/epidemiologia , Características da Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/etnologia , Pneumonia Viral/virologia , Fatores de Risco , SARS-CoV-2 , Vigilância de Evento Sentinela , Fatores Sexuais , População Branca
18.
JMIR Public Health Surveill ; 6(3): e19773, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32484782

RESUMO

BACKGROUND: Routinely recorded primary care data have been used for many years by sentinel networks for surveillance. More recently, real world data have been used for a wider range of research projects to support rapid, inexpensive clinical trials. Because the partial national lockdown in the United Kingdom due to the coronavirus disease (COVID-19) pandemic has resulted in decreasing community disease incidence, much larger numbers of general practices are needed to deliver effective COVID-19 surveillance and contribute to in-pandemic clinical trials. OBJECTIVE: The aim of this protocol is to describe the rapid design and development of the Oxford Royal College of General Practitioners Clinical Informatics Digital Hub (ORCHID) and its first two platforms. The Surveillance Platform will provide extended primary care surveillance, while the Trials Platform is a streamlined clinical trials platform that will be integrated into routine primary care practice. METHODS: We will apply the FAIR (Findable, Accessible, Interoperable, and Reusable) metadata principles to a new, integrated digital health hub that will extract routinely collected general practice electronic health data for use in clinical trials and provide enhanced communicable disease surveillance. The hub will be findable through membership in Health Data Research UK and European metadata repositories. Accessibility through an online application system will provide access to study-ready data sets or developed custom data sets. Interoperability will be facilitated by fixed linkage to other key sources such as Hospital Episodes Statistics and the Office of National Statistics using pseudonymized data. All semantic descriptors (ie, ontologies) and code used for analysis will be made available to accelerate analyses. We will also make data available using common data models, starting with the US Food and Drug Administration Sentinel and Observational Medical Outcomes Partnership approaches, to facilitate international studies. The Surveillance Platform will provide access to data for health protection and promotion work as authorized through agreements between Oxford, the Royal College of General Practitioners, and Public Health England. All studies using the Trials Platform will go through appropriate ethical and other regulatory approval processes. RESULTS: The hub will be a bottom-up, professionally led network that will provide benefits for member practices, our health service, and the population served. Data will only be used for SQUIRE (surveillance, quality improvement, research, and education) purposes. We have already received positive responses from practices, and the number of practices in the network has doubled to over 1150 since February 2020. COVID-19 surveillance has resulted in tripling of the number of virology sites to 293 (target 300), which has aided the collection of the largest ever weekly total of surveillance swabs in the United Kingdom as well as over 3000 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serology samples. Practices are recruiting to the PRINCIPLE (Platform Randomised trial of INterventions against COVID-19 In older PeopLE) trial, and these participants will be followed up through ORCHID. These initial outputs demonstrate the feasibility of ORCHID to provide an extended national digital health hub. CONCLUSIONS: ORCHID will provide equitable and innovative use of big data through a professionally led national primary care network and the application of FAIR principles. The secure data hub will host routinely collected general practice data linked to other key health care repositories for clinical trials and support enhanced in situ surveillance without always requiring large volume data extracts. ORCHID will support rapid data extraction, analysis, and dissemination with the aim of improving future research and development in general practice to positively impact patient care. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/19773.


Assuntos
Ensaios Clínicos como Assunto , Infecções por Coronavirus/epidemiologia , Medicina Geral/organização & administração , Sistemas Computadorizados de Registros Médicos , Pneumonia Viral/epidemiologia , Vigilância em Saúde Pública , COVID-19 , Humanos , Pandemias , Atenção Primária à Saúde/organização & administração , Sociedades Médicas , Reino Unido/epidemiologia
19.
Lancet Infect Dis ; 20(9): 1034-1042, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32422204

RESUMO

BACKGROUND: There are few primary care studies of the COVID-19 pandemic. We aimed to identify demographic and clinical risk factors for testing positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) within the Oxford Royal College of General Practitioners (RCGP) Research and Surveillance Centre primary care network. METHODS: We analysed routinely collected, pseudonymised data for patients in the RCGP Research and Surveillance Centre primary care sentinel network who were tested for SARS-CoV-2 between Jan 28 and April 4, 2020. We used multivariable logistic regression models with multiple imputation to identify risk factors for positive SARS-CoV-2 tests within this surveillance network. FINDINGS: We identified 3802 SARS-CoV-2 test results, of which 587 were positive. In multivariable analysis, male sex was independently associated with testing positive for SARS-CoV-2 (296 [18·4%] of 1612 men vs 291 [13·3%] of 2190 women; adjusted odds ratio [OR] 1·55, 95% CI 1·27-1·89). Adults were at increased risk of testing positive for SARS-CoV-2 compared with children, and people aged 40-64 years were at greatest risk in the multivariable model (243 [18·5%] of 1316 adults aged 40-64 years vs 23 [4·6%] of 499 children; adjusted OR 5·36, 95% CI 3·28-8·76). Compared with white people, the adjusted odds of a positive test were greater in black people (388 [15·5%] of 2497 white people vs 36 [62·1%] of 58 black people; adjusted OR 4·75, 95% CI 2·65-8·51). People living in urban areas versus rural areas (476 [26·2%] of 1816 in urban areas vs 111 [5·6%] of 1986 in rural areas; adjusted OR 4·59, 95% CI 3·57-5·90) and in more deprived areas (197 [29·5%] of 668 in most deprived vs 143 [7·7%] of 1855 in least deprived; adjusted OR 2·03, 95% CI 1·51-2·71) were more likely to test positive. People with chronic kidney disease were more likely to test positive in the adjusted analysis (68 [32·9%] of 207 with chronic kidney disease vs 519 [14·4%] of 3595 without; adjusted OR 1·91, 95% CI 1·31-2·78), but there was no significant association with other chronic conditions in that analysis. We found increased odds of a positive test among people who are obese (142 [20·9%] of 680 people with obesity vs 171 [13·2%] of 1296 normal-weight people; adjusted OR 1·41, 95% CI 1·04-1·91). Notably, active smoking was linked with decreased odds of a positive test result (47 [11·4%] of 413 active smokers vs 201 [17·9%] of 1125 non-smokers; adjusted OR 0·49, 95% CI 0·34-0·71). INTERPRETATION: A positive SARS-CoV-2 test result in this primary care cohort was associated with similar risk factors as observed for severe outcomes of COVID-19 in hospital settings, except for smoking. We provide evidence of potential sociodemographic factors associated with a positive test, including deprivation, population density, ethnicity, and chronic kidney disease. FUNDING: Wellcome Trust.


Assuntos
Betacoronavirus , Infecções por Coronavirus/epidemiologia , Pneumonia Viral/epidemiologia , Adolescente , Adulto , Fatores Etários , Idoso , Betacoronavirus/genética , Betacoronavirus/isolamento & purificação , População Negra , COVID-19 , Criança , Pré-Escolar , Infecções por Coronavirus/complicações , Infecções por Coronavirus/etnologia , Infecções por Coronavirus/etiologia , Estudos Transversais , Inglaterra/epidemiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Obesidade/complicações , Pandemias , Pneumonia Viral/complicações , Pneumonia Viral/etnologia , Pneumonia Viral/etiologia , Áreas de Pobreza , Reação em Cadeia da Polimerase em Tempo Real , Insuficiência Renal Crônica/complicações , Fatores de Risco , População Rural , SARS-CoV-2 , Fatores Sexuais , Fumar , População Urbana , Adulto Jovem
20.
JMIR Public Health Surveill ; 6(2): e18606, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32240095

RESUMO

BACKGROUND: The Royal College of General Practitioners (RCGP) Research and Surveillance Centre (RSC) and Public Health England (PHE) have successfully worked together on the surveillance of influenza and other infectious diseases for over 50 years, including three previous pandemics. With the emergence of the international outbreak of the coronavirus infection (COVID-19), a UK national approach to containment has been established to test people suspected of exposure to COVID-19. At the same time and separately, the RCGP RSC's surveillance has been extended to monitor the temporal and geographical distribution of COVID-19 infection in the community as well as assess the effectiveness of the containment strategy. OBJECTIVES: The aims of this study are to surveil COVID-19 in both asymptomatic populations and ambulatory cases with respiratory infections, ascertain both the rate and pattern of COVID-19 spread, and assess the effectiveness of the containment policy. METHODS: The RCGP RSC, a network of over 500 general practices in England, extract pseudonymized data weekly. This extended surveillance comprises of five components: (1) Recording in medical records of anyone suspected to have or who has been exposed to COVID-19. Computerized medical records suppliers have within a week of request created new codes to support this. (2) Extension of current virological surveillance and testing people with influenza-like illness or lower respiratory tract infections (LRTI)-with the caveat that people suspected to have or who have been exposed to COVID-19 should be referred to the national containment pathway and not seen in primary care. (3) Serology sample collection across all age groups. This will be an extra blood sample taken from people who are attending their general practice for a scheduled blood test. The 100 general practices currently undertaking annual influenza virology surveillance will be involved in the extended virological and serological surveillance. (4) Collecting convalescent serum samples. (5) Data curation. We have the opportunity to escalate the data extraction to twice weekly if needed. Swabs and sera will be analyzed in PHE reference laboratories. RESULTS: General practice clinical system providers have introduced an emergency new set of clinical codes to support COVID-19 surveillance. Additionally, practices participating in current virology surveillance are now taking samples for COVID-19 surveillance from low-risk patients presenting with LRTIs. Within the first 2 weeks of setup of this surveillance, we have identified 3 cases: 1 through the new coding system, the other 2 through the extended virology sampling. CONCLUSIONS: We have rapidly converted the established national RCGP RSC influenza surveillance system into one that can test the effectiveness of the COVID-19 containment policy. The extended surveillance has already seen the use of new codes with 3 cases reported. Rapid sharing of this protocol should enable scientific critique and shared learning. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/18606.


Assuntos
Infecções por Coronavirus/epidemiologia , Coronavirus , Notificação de Doenças/métodos , Sistemas Computadorizados de Registros Médicos , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Vigilância em Saúde Pública/métodos , Betacoronavirus , COVID-19 , Surtos de Doenças , Inglaterra/epidemiologia , Feminino , Humanos , Masculino , Saúde Pública , SARS-CoV-2 , Vigilância de Evento Sentinela
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA